Legitimate Workforce

JOIN HERE AND EARN MONEY!!!! The On Demand Global Workforce - oDeskThe On Demand Global Workforce - oDesk

Monday, June 30, 2008

Communication satellite








A communications satellite (sometimes abbreviated to comsat) is an artificial satellite stationed in space for the purposes of telecommunications. Modern communications satellites use a variety of orbits including geostationary orbits, Molniya orbits, other elliptical orbits and low (polar and non-polar) Earth orbits.
For fixed (point-to-point) services, communications satellites provide a microwave radio relay technology complementary to that of fiber optic submarine communication cables. They are also used for mobile applications such as communications to ships, vehicles, planes and hand-held terminals, and for TV and radio broadcasting, for which application of other technologies, such as cable, is impractical or impossible.

Early missions
The first satellite equipped with on-board radio-transmitte that worked on two frequences, 20.005 and 40.002 MHz was the Soviet Sputnik 1, launched in 1957. The first American satellite to relay communications was Project SCORE in 1958, which used a tape recorder to store and forward voice messages. It was used to send a Christmas greeting to the world from U.S. President Dwight D. Eisenhower. NASA launched an Echo satellite in 1960; the 100-foot aluminized PET film balloon served as a passive reflector for radio communications. Courier 1B, (built by Philco) also launched in 1960, was the world’s first active repeater satellite.
Telstar was the first active, direct relay communications satellite. Belonging to AT&T as part of a multi-national agreement between AT&T, Bell Telephone Laboratories, NASA, the British General Post Office, and the French National PTT (Post Office) to develop satellite communication, it was launched by NASA from Cape Canaveral on July 10, 1962, the first privately sponsored space launch. Telstar was placed in an elliptical orbit (completed once every 2 hours and 37 minutes), rotating at a 45° angle above the equator.
An immediate antecedent of the geostationary satellites was Hughes’ Syncom 2, launched on July 26, 1963. Syncom 2 revolved around the earth once per day at constant speed, but because it still had north-south motion, special equipment was needed to track it.


A Low Earth Orbit (LEO)
typically is a circular orbit about 400 kilometres above the earth’s surface and, correspondingly, a period (time to revolve around the earth) of about 90 minutes. Because of their low altitude, these satellites are only visible from within a radius of roughly 1000 kilometres from the sub-satellite point. In addition, satellites in low earth orbit change their position relative to the ground position quickly. So even for local applications, a large number of satellites are needed if the mission requires uninterrupted connectivity.
Low earth orbiting satellites are less expensive to position in space than geostationary satellites and, because of their closer proximity to the ground, require lower signal strength (Recall that signal strength falls off as the square of the distance from the source, so the effect is dramatic). So there is a trade off between the number of satellites and their cost. In addition, there are important differences in the onboard and ground equipment needed to support the two types of missions.
A group of satellites working in concert thus is known as a satellite constellation. Two such constellations which were intended for provision for satellite phone services, primarily to remote areas, were the Iridium and Globalstar. The Iridium system has 66 satellites. Another LEO satellite constellation known as Teledesic, with backing from Microsoft entrepreneur Paul Allen, was to have over 840 satellites. This was later scaled back to 288 and ultimately ended up only launching one test satellite.
It is also possible to offer discontinuous coverage using a low Earth orbit satellite capable of storing data received while passing over one part of Earth and transmitting it later while passing over another part. This will be the case with the CASCADE system of Canada’s CASSIOPE communications satellite. Another system using this store and forward method is Orbcomm.

source: wikipedia

No comments: